New conditions for the average optimality of non-stationary MDP

Xin Guo

Cooperate with: Yi Zhang and Yonghui Huang

School of Science, Sun Yat-sen University

1st August 2023

4 3 b

Background

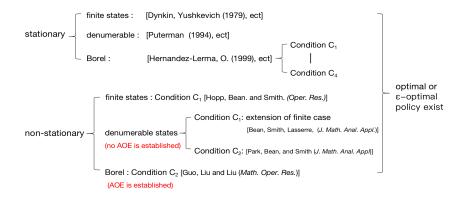
Conditions C_1 - C_4 are listed as follows: for each $n \ge 0$,

- C_1 : there exists a state x_{n+1} and $\alpha_n \in (0,1)$ s.t. $p_n(\{x_{n+1}\}|x,a) \ge \alpha_n$
- C_2 : there exists a measure μ with $\mu_n(S_{n+1}) > 0$ s.t. $p_n(\cdot|x,a) \ge \mu_n(\cdot)$
- C_3 : there exists a measure ν with $\nu_n(S_{n+1}) < 2$ s.t. $p_n(\cdot|x, a) \le \nu_n(\cdot)$
- C_4 : there exists a number $\beta_n \in (0, 1)$ s.t.

$$\sup_{B\in\mathcal{B}(S_{n+1})}|p_n(B|x,a)-p_n(B|x',a')|\leq\beta_n$$

 $C_1 \rightarrow C_2 \rightarrow C_4 \leftarrow C_3$

・ 同 ト ・ ヨ ト ・ ヨ



Our aim: Under the Condition C_4 for non-stationary case, we establish the average optimality equation (AOE), which can be used to prove the existence of the optimal/ ϵ -optimal Markov policies.

non-stationary MDP

$\left\{S, A_n(x), p_n(\cdot|x, a), r_n(x, a)\right\}$

- S: Borel state space
- $A_n(x)$: admissible actions at n
- $p_n(\cdot|x, a)$: transition probability from stage n to stage n+1

• $r_n(x, a)$: reward function at time n, Borel measurable Average reward criterion:

$$V(\pi, x) := \liminf_{N \to \infty} \frac{\sum_{n=0}^{N-1} E_x^{\pi} r_n(X_n, A_n)}{N}, \qquad (1)$$

For any $x\in S$, let $V^*(x):=\sup_{\pi\in\Pi}V(\pi,x)$

Banach fixed point theorem

Let (V, d) be a metric space. A function G from V into itself is said to be a contraction operator if for some β satisfying 0 ≤ β < 1 one has for all u, v ∈ V

$$d(Gu, Gv) \leq \beta d(u, v)$$

- If G is a contraction operator mapping a complete metric space (V, d) into itself, then G has a unique fixed point v*, e.g. Gv* = v*
- In the bounded and homogeneous case, v* denotes the limit of the VI functions v_k = Gv_{k-1} = G^kv₀

化压力 化压力

Extension of span fixed point theorem

• B_n is a complete space under a span semi-metric ρ_n on B_n . $\rho_n(u, v) := d_n(u - v)$ where d_n is a span semi-norm

$$d_n(u) := \sup_{x \in S_n} u(x) - \inf_{x \in S_n} u(x) = \sup_{x, y \in S_n} |u(x) - u(y)|$$
(2)

- $B := \prod_{n=0}^{\infty} B_n$
- (G_n) is a sequence of operators $G_n: B_{n+1} \to B_n$.
- Defining a map $G: B \to B$ by

$$G(u_n) := (G_n u_{n+1}) \quad \text{for } (u_n) \in B, u_n \in B_n, \tag{3}$$

where $u_{n+1} \in B_{n+1}$ and $G_n u_{n+1} \in B_n$ for all $n \ge 0$, and so $(G_n u_{n+1}) \in B$.

4 3 5 4 3

Let the complete space (B_n, ρ_n) be equipped with span semi-metric ρ_n . Given any point $b = (b_n) \in B := \prod_{n=0}^{\infty} B_n$, suppose the followings are satisfied:

(i)
$$\lim_{n\to\infty} \sup_{m} c_{n,m} = 0$$
,
(ii) $\rho_n(G_n u_{n+1}, G_n v_{n+1}) \le \rho_{n+1}(u_{n+1}, v_{n+1})$ for all $u_{n+1}, v_{n+1} \in B_{n+1}$
(iii) $\rho_n(b_n, G_n \cdots G_{n+m} b_{n+m+1}) \le c_{n,m}$ for all $n, m \ge 0$.

Then, the following assertions hold.

(a) For each $n \ge 0$, there exists a function u_n^* such that the limit $\lim_{k\to\infty} \rho_n(u_n^k, u_n^*) = 0$ exists, where u_n^k is given by

$$u_n^0 := b_n, \ u_n^k := G_n u_{n+1}^{k-1} \quad \text{for all } k \ge 1.$$
 (4)

(b) The $u^* := (u_n^*)$ is in B(b), and it is a unique fixed point of G, that is

Useful concepts

It is known that each Borel-measurable function is upper semianalytic. Hence, $r_n(x, a)$ is upper semianalytic on K_n for each $n \ge 0$. Given $n \ge 0$, the set of all upper semianalytic and bounded functions on S_n is denoted by $M_a(S_n)$. Obviously, $M_b(S_n) \subset M_a(S_n)$. In the following, we consider the space $M_a(S_n)$.

4 3 b

Lemma 1

Given any $n \ge 0$ and $u \in M_a(S_{n+1})$, define the function \hat{u}_n by

$$\hat{u}(x) := \sup_{a \in A_n(x)} \left\{ r_n(x,a) + \int_{S_{n+1}} u(y) \rho_n(dy|x,a) \right\} \quad x \in S_n.$$

Then, the following assertions hold.

- (a) The function $\hat{u}(\cdot)$ is upper semianalytic on S_n , and $\hat{u} \in M_a(S_n)$;
- (b) For every $\varepsilon > 0$, there exists a f_n (depending on ε) such that

$$r_n(x,f_n(x)) + \int_{\mathcal{S}_{n+1}} u(y)p_n(dy|x,f_n(x)) \geq \hat{u}(x) - \varepsilon \quad \forall x \in \mathcal{S}_n.$$
(5)

-

< A >

< ∃ >

Remark: This selection theorem does not require such conditions to guarantee the existence of the selector.

We define the operator G_n as following

$$G_n u(x) := \sup_{a \in A_n(x)} \left[r_n(x, a) + \int_{S_{n+1}} u(y) p_n(dy|x, a) \right], \quad u \in M_a(S_{n+1}), \quad (6)$$

which is defined well (by \hat{u} Lemma 1)

Condition (C_4)

For each $n \ge 0$, there exists a number β_n such that

• $\sup_{B \in \mathcal{B}(S_{n+1})} |p_n(B|x, a) - p_n(B|x', a')| \le \beta_n$ for all $(x, a), (x', a') \in K_n$;

Lemma

Under Condition C_4 , we have

$$\rho_n(G_nu,G_nv)\leq\beta_n\rho_{n+1}(u,v)\quad\forall\ u,v\in M_a(S_{n+1})\ {\rm and}\ n\geq 0,$$

where β_n is the number in Condition C_4 .

Assumption A

For each $n \ge 0$, there exists a number β_n such that

(1) $\sup_{B \in \mathcal{B}(S_{n+1})} |p_n(B|x, a) - p_n(B|x', a')| \le \beta_n$ for all $(x, a), (x', a') \in K_n$; (2) $\lim_{n \to \infty} \beta_1 \cdots \beta_{n-1} L_n = 0$, where

$$L_{n} := d_{n}(r_{n}^{*}) + \sum_{k=1}^{\infty} \beta_{n} \cdots \beta_{n+k-1} d_{n+k}(r_{n+k}^{*})$$
(7)

where $r_n^*(x) := \sup_{a \in A_n(x)} r_n(x, a), x \in S_n, n \ge 0$

- 4 周 ト 4 ヨ ト 4 ヨ

Under Assumption A, the following assertions hold.

(a) For each $n \ge 0$, define a sequence of functions $\{u_n^k, k = 0, \ldots\}$ in $M_a(S_n)$ by

$$u_n^0(x) := 0, \quad u_n^k(x) := G_n u_{n+1}^{k-1}(x)$$

Then, there exists some function $u_n^* \in M_a(S_n)$ such that

$$\lim_{k\to\infty}\rho_n(u_n^k,u_n^*)=0$$

(b) There exists a real number sequence {g_n^{*}} and sequence {u_n^{*}} in (a), solving AOE (8); that is, {(g_n^{*}, u_n^{*}), n = 0, 1, ...} is a solution to AOE (8).

Xin Guo

$$g_n + u_n(x) = \sup_{a \in A_n(x)} \left\{ r_n(x, a) + \int_{S_{n+1}} p_n(dy|x, a) u_{n+1}(y) \right\}$$
(8)

(c) The elements u_n^* in (b) have some properties.

< □ > < 同 >

Under Assumption A, with the $\{(g_n^*, u_n^*) : n \ge 0\}$ as in Theorem 2, the following assertions hold.

(a) $V^*(x) = \limsup_{n \to \infty} \frac{g_0^* + g_1^* + \dots + g_n^*}{n+1}$ for all $x \in S_0$.

(b) For any $\epsilon > 0$, there exists a Markov policy $\pi^* = \{f_n^*\}$ satisfying

$$r_n(x, f_n^*(x)) + \int_{S_{n+1}} u_{n+1}^* p_n(dy|x, f_n^*(x)) \ge g_n^* + u_n^*(x) - \epsilon$$
(9)

and $V(\pi^*, x) \ge V^*(x) - \epsilon$ for all $x \in S_0$; This means that π^* is ϵ -optimal.

イロト イボト イヨト イヨト

Assumption B

To achieve the existence of a Markov optimal policy, besides Assumption A, we need the standard continuous-compact conditions.

For each
$$n \ge 0, x \in S_n$$
, and every $D \in \mathcal{B}(S_{n+1})$,

(1) $A_n(x)$ is compact; and

(2)
$$r_n(x,a) + \int_{S_{n+1}} u(y)p_n(dy|x,a)$$
 is continuous in $a \in A_n(x)$ for any $u \in M_b(S_{n+1})$.

イロト イポト イヨト イヨ

If Assumptions A and B hold, then we have the following assertions.

- (a) There exist a number sequence $\{g_n^*\}$ and a sequence $\{u_n^*\}$ of Borel measurable functions u_n^* satisfying AOE (8) for all $n \ge 0$ and $x \in S_n$.
- (b) There exists a Markov policy $\pi^* = \{f_n^*\} \in \Pi_m^d$ such that for all $x \in S_n$ and $n \ge 0$,

$$r_n(x, f_n^*(x)) + \int_{S_{n+1}} u_{n+1}^*(y) p_n(dy|x, f_n^*(x)) = g_n^* + u_n^*(x).$$
(10)

(c) The Markov policy π^* in (b) is optimal.

A (1) > (1) > (1)

Motivation Model description

Thanks!

æ

Xin Guo New conditions for the average optimality of non-stationary M

<ロ> (日) (日) (日) (日) (日)